NEWS AND LETTERS

73rd Annual William Lowell Putnam
Mathematical Competition

Editor’s Note: Additional solutions will be printed in the Monthly later in the year.

PROBLEMS

Al. Letd,d,,...,d, be real numbers in the open interval (1, 12). Show that there
exist distinct indices 7, j, k such that d;, d;, d; are the side lengths of an acute triangle.

A2. Let* be acommutative and associative binary operation on a set S. Assume that
for every x and y in S, there exists z in S such that x x z = y. (This z may depend on
x and y.) Show thatif a, b, carein Sanda xc = b x ¢, thena = b.

A3. Let f:[—1, 1] — R be a continuous function such that
2

X
2 — x2
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(i) f(@0) =1, and
N fx)
1
(ii1) xlr?f —

Prove that f is unique, and express f(x) in closed form.

exists and is finite.

Ad4. Let g and r be integers with ¢ > 0, and let A and B be intervals on the real
line. Let T be the set of all b + mq where b and m are integers with b in B, and let S
be the set of all integers a in A such that ra is in 7. Show that if the product of the
lengths of A and B is less than ¢, then S is the intersection of A with some arithmetic
progression.

AS. Let IF, denote the field of integers modulo a prime p, and let n be a positive
integer. Let v be a fixed vector in Fl’j let M be an n x n matrix with entries in IF,, and
define G : ) — F2 by G(x) = v+ Mx. Let G® denote the k-fold composition of G
with itself, that is, GV (x) = G(x) and G**V(x) = G(G"¥ (x)). Determine all pairs
p, n for which there exist v and M such that the p" vectors GX(0), k = 1,2, ..., p",
are distinct.

A6. Let f(x, y) be a continuous, real-valued function on R?. Suppose that, for every
rectangular region R of area 1, the double integral of f(x, y) over R equals 0. Must
f(x, y) be identically 0?
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B1. Let S be a class of functions from [0, 0co) to [0, 00) that satisfies:

(i) The functions fi(x) =e* — 1 and f>(x) = In(x 4+ 1) are in S;
@i1) If f(x) and g(x) are in S, then the functions f(x) 4+ g(x) and f(g(x)) are in S;

(i) If f(x) and g(x) are in S and f(x) > g(x) for all x > 0, then the function
f(x) —g(x)isin S.

Prove that if f(x) and g(x) are in S, then the function f(x)g(x) is also in S.

B2. Let P be a given (non-degenerate) polyhedron. Prove that there is a constant
c(P) > 0 with the following property: If a collection of n balls whose volumes sum to
V contains the entire surface of P, thenn > c¢(P)/ V2.

B3. A round-robin tournament among 2n teams lasted for 2n — 1 days, as follows.
On each day, every team played one game against another team, with one team winning
and one team losing in each of the n games. Over the course of the tournament, each
team played every other team exactly once. Can one necessarily choose one winning
team from each day without choosing any team more than once?

B4. Suppose that ¢y = 1 and that a,,1 = a, + e for n =0,1,2,.... Does
— log n have a finite limit as n — oo? (Here logn = log, n = Inn.)

BS. Prove that, for any two bounded functions g1, g, : R — [1, 00), there exist func-
tions i1, h, : R — R such that, for every x € R,

sup (£1(5)"g2(5)) = max (xh; (1) + ha(1)).

B6. Let p be an odd prime number such that p =2 (mod 3). Define a permutation
7 of the residue classes modulo p by 7 (x) = x*> (mod p). Show that 7 is an even
permutation if and only if p =3 (mod 4).

SOLUTIONS

Solution to A1. Without loss of generality, assume that the d; are in nondecreasing
order. We then need d?,, < d?., + d? for some i. If d > d} + d3, then dj > 2d}. If
in addition d} > d? + d3, then d? > 3d2 Fyd?, where F; denotes the ith Fibonacci
number. By 1nduct10n either we succeed or d2 > F; d2 But Fy, = 144, d;, < 12, and
d; > 1, so we must succeed at some point.

Solution to A2. Assume thata xc =b*xc,and lete,,d € S satisfy a x e, = a and
c*d =e,. Then

a=axe,=ax(c*xd)=(@xc)xd=b*c)xd=b*x(cxd)=>b=xe,.

Repeating the steps so far with a and b interchanged, there exists e, € S such that
a x e, = b * e, = b. Therefore,

a=bxe,=(axe,) xe, =ax (e, *e,)

=ax(e,xep) = (ax*xe,) ke, =axe,=>b.
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Solution to A3. f(x) =+/1 —x2.
Proof: On (—1, 1), set g(x) = f(x)/+/1 — x2. Then

=X X2
w0 =722 1 (75)
X

x2? 2
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21 = x2 2 —x2 & 2 —x2
—s\a2)

On (-1, 1), x2/(2 — x?) < |x| with equality only for x = 0, so the sequence

x2 2
x? 22
2=, (e
2—x2

always has limit 0. Thus, by continuity of g, g(x) = g(0) = 1 for all x. It follows
that f(x) = +/1 — x2, where the continuity of f was used to show equality at the
endpoints.

Note. As the proof shows, condition (iii) is actually unnecessary. (It was left in to
provide a hint of the form of the solution.)

X,

Solution to A4. Let a; < a, < a; be consecutive terms in S. We need only show
a, —a; = a3 — ap. If not, replacing A and r with —A and —r if necessary, we may
assume a, — a; < az — a,. Let by € B such that ra; = b, (mod ¢), k = 1,2, 3. Re-
placing r and B with —r and — B if necessary, we may assume b; < b,. We have

(a3 — ax)(by — b)) =r(az — ax)(ax — a1) = (az — a1) (b3 — by) (mod q).
Because
[(a3 — a2)(by — by) — (ay — ay) (b3 — by)| < (a3 — ax)|by — by| + (a2 — ay)|b3 — by|
<(az—a1)-|B| <|A|-|B|l <gq,

by—bi by —b

we have (a3 — ax)(by, — b)) = (a, — ay)(bs — by) or >0, so

a; —ag as —ap
a, —ay < as — ap implies b, — by < by — b,. Then, however,

a < 26[2 —a < as, l"(2[,12 — (11) = 2b2 — bl (mod q),
and
by <2by — by < bs,

so 2b, — by is in the interval B and hence 2a, — a; € S, a contradiction.

Solution to AS. Such v and M exist forn = 1 and all p and forn =2, p = 2.
Forn =1,setv=[1]and M = [1]. For p =n = 2, set

SRR
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Conversely, suppose v and M exist. First observe that to get distinct values, the
earliest possible occurrence of 0 is G (0). Thus,

v+ M+ Mu+--+ My =0.

Multiplying by M and combining the two expressions yields M?" v = v. But then, for
all &,

M" (v+ Mo+ +Mv)=v+ Mo+ + M.

Thus, M?" is the identity matrix. It follows that the minimal polynomial of M divides
x?" —1 = (x — 1)?". By the Cayley-Hamilton theorem, the minimal polynomial of M
divides its characteristic polynomial; in particular, the minimal polynomial has degree
at most n and so (M — I)" = 0.

If neither n = 1 nor p =n =2 holds, p"' — 1 > n, so (M — I)"""'~1 = 0.
However,

n—1 n—1

x-=DF  x7 =1 n—1_}

x—1 ox—1

- =

But then G~ (0) = 0, a contradiction.

Solution to A6. Yes, f(x, y) is identically 0, even if one only considers rectangles
with sides parallel to the x- and y- axes.
For every w > 0 and every x, y,

x4w y+1/w
/ / f(u,v)dvdu = 0.

Differentiating with respect to x, by the fundamental theorem of calculus we have

y+1/w
/ [f&x+w,v) — f(x,v)] dv=0.

Differentiating with respect to y this time yields

4w, y+1/w) = fl,y+1/w) = fx+w,y)+ flx,y) =0.

Therefore, f(x + w, y) — f(x, y) has period 1/w in y. Thus,

f(x+w+l»)’)—f(x+Zvy)—f(x+w’y)+f(xvy) (1)

has periods 1/w and 1/z in y. Choosing w and z so that z/w is irrational, this and
continuity imply (1) is independent of y, because any real y can be approximated
arbitrarily closely by numbers of the form m/w + n/z with m, n integers. Integrat-
ing (1) over any rectangle of the form [x, x 4+ ¢] x [y, y 4+ 1/¢] gives four terms that
are each the integral of f(x, y) over some shifted rectangle of area 1, so it yields 0.
By taking ¢ sufficiently small, continuity implies that (1) is identically 0. It follows
that f(x + w, y) — f(x, y) has period z in x. Since we may choose any z for which
z/w 1is irrational, f(x + w, y) — f(x, y) is independent of x. As above, integrating
over [x,x + 1/¢] x [y, y + €], it follows that it is identically 0. Since w is arbitrary
f(x,y) is independent of x. Similarly it is independent of y, hence constant, hence
identically 0.
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Solution to B1. By rule (ii), 2(f(x)) = In(f(x) +1) € SandIn(g(x) + 1) € §, so
that

In(f(x)+1)+In(g(x) +1)=1In (f(x)g(x) + fx)+gx)+ 1) es.

Therefore,

e (f(X)g(X)Jrf(X)Jrg(X)Jrl) —1=f(x)glx)+ f(x) +gx) €S.

Because f(x) + g(x) € S and f(x)g(x) + f(x) + g(x) > f(x) + g(x) for every
x € [0, 00), it follows that f(x)g(x) € S.

Solution to B2. Let F, ..., Iy be the faces of P, and let {B, ..., B,} be a collec-
tion of n balls of radii ry, ..., r, respectively, such that UileF,- € Uj_,B;. Denote by
A(X) the area of a two-dimensional figure X, and by A the total surface area of P;
note that

! n
A=Y "A(F), V:gan;.
i=1 j=1

Since
A(F; N B)) < 7r},

it follows that

n

f f n
A=) AF)<Y Y AFENB) <xf) ri.
i=1 i=1 j=1 j=1

From Holder’s inequality, we have that

2/3 1/3

Sove| (o] =yesA
j=1 j=1 wf

2/3

3vY s A

4 ~nf’

A [(4m\*  16A3/9
n>—— R = —_—
T a3 f3\3V T f3V?

We see that we can take any ¢ = ¢(P) with 0 < ¢ < 1643 /97 f3.

Solution to B3 (based on a student paper). Yes. For a proof, first consider the special
case in which for all i and j with i > j, team i defeated team j in their encounter.
Then start by choosing team 2 from the round in which teams 1 and 2 played each
other, and then go through the other teams 3,4, ..., n in order. Each of those teams,
say i, has i — 1 victories, and when we get to team i, winners from only i — 2 rounds
have been chosen, so it is possible to choose team i as the winner for a new round; all
teams except team 1 will be chosen and no team will be chosen more than once, so we
are done in this case.

It is now enough to show that if we can make a set of choices with the desired
property in one tournament, then we can again do so if the outcome of a single game in
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the tournament is changed. We may assume that the game whose outcome is changed
was between teams 1 and 2 and was originally won by team 1. If team 1 was not chosen
in that round, we can keep the same choices. If team 2 was not chosen in any other
round, we can choose team 2 in that round and keep all the other choices.

Otherwise, we will choose team 2 in that round, and in the round for which team 2
was originally chosen, we consider team 1’s opponent, say team 3. If team 1 defeated
team 3, or if team 3 was not chosen in any other round, we can choose the winner of
the game between teams 1 and 3 and we will be done. Otherwise, we choose team 3
anyway, and consider team 1’s opponent, say team 4, in the round for which team 3 was
originally chosen. In general, if we have now chosen teams 2 through i in rounds in
which they defeated team 1 and team i was originally chosen in a different round, then
we label team 1’s opponent in that different round as team i + 1, and we choose the
winner of the game between teams 1 and i 4 1. Eventually this process will terminate,
either because team 1 defeated team i 4 1 or because team i + 1 is the team that was
originally not chosen in any round, and we are then done.

SolutiontoB4. Let f(x) =x +¢*,s0a,,1 = f(a,).Notethatforx > 0, f'(x) =
1 —e™ >0, so f is increasing for x > 0. We now show by induction on n that

a, > log(n + 1) for all n. The base case is clear, and a, > log(n + 1) implies

1
ani1 = f(a,) > f(og(n + 1)) =log(n + 1) + ——
n—+1

n+2

>10g(n+1)+/ —dx =log(n+12),
n+1 X

completing the induction.
It follows that

1
n—+1

api1 —a, = e " <

n+1
</ —dx =logn+1) —logn,
a X

s0 a,y1 — log(n 4+ 1) < a, —logn . Thus the a, — logn form a decreasing sequence
of positive numbers, so they have a limit. (It can be shown that the limit is 0.)

Solution to BS. Note that every function f : R — R of the form

fx) = sup (xh1 (1) + ha(0)) 2

is convex, where ki, h, : R — R are any two functions subject only to the condition
that the supremum on the right-hand side exists for every x € R. Indeed, for every
x,y € Rand every A € (0, 1),

M)+ A =1fO)

= sup (Axhi(1) + Ao (1)) + sup (1= M)yhi (1) + (1 — Dha(1))

> sup ((Gux + (1= y) ) + (4 (1 = )ha0))

teR

= f(hx + 1 =2)y),
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so that f is a convex function. We claim that the converse is also true, namely, every
convex function f : R — R satisfies (2) for some %y, i, : R — R; in fact, we claim
that &y, h, can be chosen so that the slightly stronger condition

f(x) = max (xhi(t) + ha(t)) 3)

holds. Indeed, since f is convex, we know that f is a continuous function with left
and right derivatives at every point, which satisfies

/ ’ (b ) - (a) /

@ = fiw < 1T g,

for every a, b € R with a < b. From this it follows that

fO)=x—-0f )+ f@)

for every ¢t € R, with equality for r = x. It follows that (3) holds with
h(t) = fL(1),  ha(t) = f(1) —1fL(0).

Let g1, g2 : R — [1, 00) be as in the statement of the problem. In the first part of
the above discussion, we have proved that

f(x) = sup (xlog g(¢) +log g:(1))
teR
defines a convex function f : R — R, since log g1, log g> : R — R are bounded. But
then the function e/® is also convex. This is well known and follows from

re! O 4 (1 = Nyl ) > HOHIZNSO) 5 pfOat=0)

where the first step uses the convexity of the exponential function, and the second step
uses the convexity of f and the monotonicity of the exponential function. Since e/ ™
is a convex function, it follows by (3) that

fx) —
e/t = max (xh1 () + ha (1))
for some A, h; : R — R. This is equivalent to what was to be proved.

Solution to B6. Consider a # 0, 1, —1, the three classes fixed by z. The cycle con-
taining a has the same length as the cycle containing —a # a (mod p). Thus, the
parity of 7 is determined by those cycles containing both a and —a. Similarly, the cy-
cle containing a has the same length as the cycle containing a~! # a (mod p). Thus
we are down to cycles containing a, —a, and a~'. Then if it takes k applications of 7 to
get from a to —a, the cycle will have length 2k; on the other hand, the same argument
applies to a~! instead of —a, so —a = a~' (mod p), that is, a> = —1 (mod p). For
sucha,a® = —a (mod p) and so k = 1. Because the multiplicative group (mod p) is
cyclic of order p — 1, or by Euler’s criterion, there are no such @ when p = 3 (mod 4)
and there are two that form a cycle of order 2 when p = 1 (mod 4). Therefore, 7 is
even in the former case and odd in the latter.



