

SEVENTY FOURTH ANNUAL WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Saturday, December 7, 2013

Examination A

Problem A1

Recall that a regular icosahedron is a convex polyhedron having 12 vertices and 20 faces; the faces are congruent equilateral triangles. On each face of a regular icosahedron is written a nonnegative integer such that the sum of all 20 integers is 39. Show that there are two faces that share a vertex and have the same integer written on them.

Problem A2

Let S be the set of all positive integers that are *not* perfect squares. For n in S, consider choices of integers a_1, a_2, \ldots, a_r such that $n < a_1 < a_2 < \cdots < a_r$ and $n \cdot a_1 \cdot a_2 \cdots a_r$ is a perfect square, and let f(n) be the minimum of a_r over all such choices. For example, $2 \cdot 3 \cdot 6$ is a perfect square, while $2 \cdot 3$, $2 \cdot 4$, $2 \cdot 5$, $2 \cdot 3 \cdot 4$, $2 \cdot 3 \cdot 5$, $2 \cdot 4 \cdot 5$, and $2 \cdot 3 \cdot 4 \cdot 5$ are not, and so f(2) = 6. Show that the function f from S to the integers is one-to-one.

Problem A3

Suppose that the real numbers $a_0, a_1, ..., a_n$ and x, with 0 < x < 1, satisfy

$$\frac{a_0}{1-x} + \frac{a_1}{1-x^2} + \dots + \frac{a_n}{1-x^{n+1}} = 0.$$

Prove that there exists a real number y with 0 < y < 1 such that

$$a_0 + a_1 y + \dots + a_n y^n = 0.$$

Problem A4

A finite collection of digits 0 and 1 is written around a circle. An arc of length $L \ge 0$ consists of L consecutive digits around the circle. For each arc w, let Z(w) and N(w) denote the number of 0's in w and the number of 1's in w, respectively. Assume that $|Z(w)-Z(w')| \le 1$ for any two arcs w, w' of the same length. Suppose that some arcs w_1, \ldots, w_k have the property that

$$Z = \frac{1}{k} \sum_{j=1}^{k} Z(w_j)$$
 and $N = \frac{1}{k} \sum_{j=1}^{k} N(w_j)$

are both integers. Prove that there exists an arc w with Z(w) = Z and N(w) = N.

SEVENTY FOURTH ANNUAL WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Saturday, December 7, 2013

Examination B

Problem B4

For any continuous real-valued function f defined on the interval [0,1], let

$$\mu(f) = \int_0^1 f(x) dx, \ \operatorname{Var}(f) = \int_0^1 (f(x) - \mu(f))^2 dx, \ M(f) = \max_{0 \le x \le 1} |f(x)|.$$

Show that if f and g are continuous real-valued functions defined on the interval [0,1], then

$$\operatorname{Var}(fg) \le 2\operatorname{Var}(f)M(g)^2 + 2\operatorname{Var}(g)M(f)^2$$
.

Problem B5

Let $X = \{1, 2, ..., n\}$, and let $k \in X$. Show that there are exactly $k \cdot n^{n-1}$ functions $f: X \to X$ such that for every $x \in X$ there is a $j \ge 0$ such that $f^{(j)}(x) \le k$. [Here $f^{(j)}$ denotes the j^{th} iterate of f, so that $f^{(0)}(x) = x$ and $f^{(j+1)}(x) = f(f^{(j)}(x))$.]

Problem B6

Let $n \ge 1$ be an odd integer. Alice and Bob play the following game, taking alternating turns, with Alice playing first. The playing area consists of n spaces, arranged in a line. Initially all spaces are empty. At each turn, a player either

- places a stone in an empty space, or
- removes a stone from a nonempty space s, places a stone in the nearest empty space to the left of s (if such a space exists), and places a stone in the nearest empty space to the right of s (if such a space exists).

Furthermore, a move is permitted only if the resulting position has not occurred previously in the game. A player loses if he or she is unable to move. Assuming that both players play optimally throughout the game, what moves may Alice make on her first turn?