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Proposition 1. Suppose that A is an m× n matrix with rational entries such that the matrix of
absolute values of A, Ã, contains at least m + n distinct primes. Prove that A has rank at least
two.

Proof. Note that it suffices to show that not all rows of A are scalar multiples of the first row of A.

Throughout this problem, we let S denote a set of m + n distinct primes in Ã. First, we
prove a lemma:

Lemma 2. Let G be a graph on n vertices with n edges. Then, G contains a loop.

Proof. Proceed by induction. The case n = 1 is trivial. Now, consider a graph G with n+1 vertices
and n edges. By the pigeonhole principle, G must contain a vertex v of index at most one. Excise
v and its edges from G. If v has index zero, remove v and any edge. What remains is a subgraph
with n vertices and n edges. By our inductive hypothesis, this subgraph contains a loop. So, G
contains a loop.

To proceed, we will first solve the case when A is n× n, then show that this argument effec-
tively handles the general m× n case.

Let A be an n× n matrix satisfying the conditions of the proposition. Define a graph G(A)
on A as follows. Draw a vertex vi corresponding to each column ci for 1 ≤ i ≤ n. Now, define a
function on the rows of A as follows. Let

p : {rows of A} −→ Z≥0

p(ri) = # {elements of S in row i}

Begin in row 1. Consider the C1 of columns containing an element in S is row one. Draw a con-
nected tree between the vertices corresponding to columns in C1. Note that this tree has p(r1)− 1
edges. Do the same for row j, for 2 ≤ j ≤ n, adding the new edges onto edges we have already
drawn. Note that each row ri adds p(ri)− 1 edges.

Decompose S as follows. For i = 1, . . . , n, let Si be the primes in S contained in row i of A.
Note Si ∩ Sj = ∅ for i 6= j and S =

⋃n
i=1 Si.

Lemma 3. G(A) contains a loop.
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Proof. We will now count the number of edges in G(A), which we will call E(G(A)).

E(G(A)) =

n∑
i=1

p(ri)− 1

=

n∑
i=1

p(ri)−
n∑

i=1

1

= 2n− n
= n

It follows from lemma 2 that G(A) contains a loop.

Now, suppose that all columns of A are scalar multiples of the first colum (that A has rank
at most one). Then, when two vertices vi, vj are connected by an edge in G(A), ci = λcj , where λ
can be expressed as a ratio of elements of S that live in the same row of A.

Choose a vertex vi contained in a loop of G. Then, there are scalars λ0, λ1, . . . , λk such that

ci = λ1 . . . λkcj

ci = λ0cj

where |λi| is a ratio of distinct primes in S.

We will derive a contradiction from the equation

|λ0| = |λ1 . . . λk| (1)

By performing an elementary row operation, we may assume without loss of generality that λ0 is
the ratio of two primes in S1, say p0/p1.

Our graph was constructed so that if λi1 , . . . , λir are ratios of primes in Sj , then λi1 . . . λir 6= 1.
In particular, this product, in lowest terms will contain at least one primes in Sj in both its nu-
merator and denominator.

Also, by construction, product λ1 . . . λk must contain a λk such that λk is a ratio of primes in
Si for i > 1. This is because row 1 induced no loops in the graph. By the previous observation, one
such ratio p2/p3 remains when λ1 . . . λk is expressed in lowest terms. Clearing the denominator, we
have

p3p0p
∗
1 . . . p

∗
s = p1p2p

′
1 . . . p

′
s

where the other primes are in S. This contradicts the fundamental theorem of arithmetic.

This proves the n × n case. Note that in an m × n matrix for m > n. Then, there must
be a row that contains 1 or fewer elements of S. Perform a row operation to move this row to
the bottom and consider the upper m − 1 × n submatrix. Repeat until we have an n × n matrix
containing 2n entries and apply the preivous proof.
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