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Proposition 1. Suppose f is a function on the interval [1,3] such that —1 < f(z) < 1 for all z
and ff’ f(z) de = 0. Then, f13 @ dx‘ < log(4/3) and this bound is attained.

Proof. Let x1 denote the characeristic function of the interval I. We will first show
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We have

Now, we make a mono-invariance argument:

Lemma 2. Let h(x) be a function on [1,3] such that f13 h(z) = 0 and suppose that h;(x) :=
h(z)|j,2) = 0 and ha(z) := h(z)]j23) < 0. Then,

Proof.
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Now, let f be a function on [1,3]. Let
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be a function from [1,3] to R. Then, g satisfies the conditions of lemma 2 and so ff’ @ > 0.

Consequently,
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and so the integral is maximized by X[1,2) — X[2,3, Which gives the value log 4/3. Similar arguments
show that the minimum value of the integral is given by X[23 — X[1,2)- Here, the value of that
integral is log3/4 = —log4/3. O



